extension | φ:Q→Aut N | d | ρ | Label | ID |
C14.1C22≀C2 = (C2×Dic7)⋊Q8 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 448 | | C14.1C2^2wrC2 | 448,190 |
C14.2C22≀C2 = (C2×C4)⋊9D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.2C2^2wrC2 | 448,199 |
C14.3C22≀C2 = D14⋊C4⋊C4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.3C2^2wrC2 | 448,202 |
C14.4C22≀C2 = (C2×C28)⋊5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.4C2^2wrC2 | 448,205 |
C14.5C22≀C2 = (C2×Dic7)⋊3D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.5C2^2wrC2 | 448,206 |
C14.6C22≀C2 = (C2×C4).20D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.6C2^2wrC2 | 448,207 |
C14.7C22≀C2 = D28.31D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | | C14.7C2^2wrC2 | 448,265 |
C14.8C22≀C2 = D28⋊13D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | | C14.8C2^2wrC2 | 448,266 |
C14.9C22≀C2 = D28.32D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.9C2^2wrC2 | 448,267 |
C14.10C22≀C2 = D28⋊14D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.10C2^2wrC2 | 448,268 |
C14.11C22≀C2 = Dic14⋊14D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.11C2^2wrC2 | 448,272 |
C14.12C22≀C2 = C22⋊Dic28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.12C2^2wrC2 | 448,273 |
C14.13C22≀C2 = C23⋊D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 56 | 8+ | C14.13C2^2wrC2 | 448,275 |
C14.14C22≀C2 = C23.5D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 8- | C14.14C2^2wrC2 | 448,276 |
C14.15C22≀C2 = D28.1D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 8- | C14.15C2^2wrC2 | 448,280 |
C14.16C22≀C2 = D28⋊1D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 56 | 8+ | C14.16C2^2wrC2 | 448,281 |
C14.17C22≀C2 = D28.4D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 8- | C14.17C2^2wrC2 | 448,286 |
C14.18C22≀C2 = D28.5D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 8+ | C14.18C2^2wrC2 | 448,287 |
C14.19C22≀C2 = D4⋊D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | | C14.19C2^2wrC2 | 448,307 |
C14.20C22≀C2 = D4.6D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | | C14.20C2^2wrC2 | 448,310 |
C14.21C22≀C2 = D4⋊3D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.21C2^2wrC2 | 448,315 |
C14.22C22≀C2 = D4.D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.22C2^2wrC2 | 448,317 |
C14.23C22≀C2 = Q8⋊2D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.23C2^2wrC2 | 448,340 |
C14.24C22≀C2 = D14⋊4Q16 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.24C2^2wrC2 | 448,342 |
C14.25C22≀C2 = Q8.D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.25C2^2wrC2 | 448,344 |
C14.26C22≀C2 = D28⋊4D4 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.26C2^2wrC2 | 448,345 |
C14.27C22≀C2 = D4⋊4D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 56 | 4+ | C14.27C2^2wrC2 | 448,356 |
C14.28C22≀C2 = M4(2)⋊D14 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 4 | C14.28C2^2wrC2 | 448,359 |
C14.29C22≀C2 = D4.9D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 4- | C14.29C2^2wrC2 | 448,360 |
C14.30C22≀C2 = D4.10D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 112 | 4 | C14.30C2^2wrC2 | 448,361 |
C14.31C22≀C2 = C24.47D14 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.31C2^2wrC2 | 448,484 |
C14.32C22≀C2 = C23.45D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.32C2^2wrC2 | 448,492 |
C14.33C22≀C2 = C23⋊2D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.33C2^2wrC2 | 448,494 |
C14.34C22≀C2 = C23.16D28 | φ: C22≀C2/C22⋊C4 → C2 ⊆ Aut C14 | 224 | | C14.34C2^2wrC2 | 448,495 |
C14.35C22≀C2 = C24.46D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.35C2^2wrC2 | 448,480 |
C14.36C22≀C2 = C23⋊Dic14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.36C2^2wrC2 | 448,481 |
C14.37C22≀C2 = C23.44D28 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | | C14.37C2^2wrC2 | 448,489 |
C14.38C22≀C2 = C24.12D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.38C2^2wrC2 | 448,490 |
C14.39C22≀C2 = C24.14D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.39C2^2wrC2 | 448,493 |
C14.40C22≀C2 = (C2×C4)⋊Dic14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 448 | | C14.40C2^2wrC2 | 448,513 |
C14.41C22≀C2 = D14⋊C4⋊6C4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.41C2^2wrC2 | 448,523 |
C14.42C22≀C2 = (C2×C4)⋊3D28 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.42C2^2wrC2 | 448,525 |
C14.43C22≀C2 = C24⋊D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 56 | 4 | C14.43C2^2wrC2 | 448,566 |
C14.44C22≀C2 = D28⋊16D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | | C14.44C2^2wrC2 | 448,570 |
C14.45C22≀C2 = D28⋊17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.45C2^2wrC2 | 448,571 |
C14.46C22≀C2 = Dic14⋊17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.46C2^2wrC2 | 448,574 |
C14.47C22≀C2 = D28.36D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | | C14.47C2^2wrC2 | 448,580 |
C14.48C22≀C2 = D28.37D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.48C2^2wrC2 | 448,581 |
C14.49C22≀C2 = Dic14.37D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.49C2^2wrC2 | 448,584 |
C14.50C22≀C2 = C22⋊C4⋊D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 4 | C14.50C2^2wrC2 | 448,587 |
C14.51C22≀C2 = C42⋊5D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 4 | C14.51C2^2wrC2 | 448,595 |
C14.52C22≀C2 = D28.14D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 4 | C14.52C2^2wrC2 | 448,596 |
C14.53C22≀C2 = D28⋊5D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 56 | 4 | C14.53C2^2wrC2 | 448,611 |
C14.54C22≀C2 = D28.15D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 4 | C14.54C2^2wrC2 | 448,629 |
C14.55C22≀C2 = D28⋊D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | | C14.55C2^2wrC2 | 448,690 |
C14.56C22≀C2 = Dic14⋊D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.56C2^2wrC2 | 448,692 |
C14.57C22≀C2 = D14⋊6SD16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | | C14.57C2^2wrC2 | 448,703 |
C14.58C22≀C2 = Dic14⋊7D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.58C2^2wrC2 | 448,704 |
C14.59C22≀C2 = D28⋊7D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.59C2^2wrC2 | 448,706 |
C14.60C22≀C2 = Dic14.16D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.60C2^2wrC2 | 448,707 |
C14.61C22≀C2 = D14⋊5Q16 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.61C2^2wrC2 | 448,720 |
C14.62C22≀C2 = D28.17D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.62C2^2wrC2 | 448,721 |
C14.63C22≀C2 = D28⋊18D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 56 | 8+ | C14.63C2^2wrC2 | 448,732 |
C14.64C22≀C2 = D28.38D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 8- | C14.64C2^2wrC2 | 448,735 |
C14.65C22≀C2 = D28.39D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 8+ | C14.65C2^2wrC2 | 448,736 |
C14.66C22≀C2 = D28.40D4 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 112 | 8- | C14.66C2^2wrC2 | 448,739 |
C14.67C22≀C2 = C24.18D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.67C2^2wrC2 | 448,754 |
C14.68C22≀C2 = C24.21D14 | φ: C22≀C2/C2×D4 → C2 ⊆ Aut C14 | 224 | | C14.68C2^2wrC2 | 448,757 |
C14.69C22≀C2 = C24.62D14 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.69C2^2wrC2 | 448,744 |
C14.70C22≀C2 = C23.28D28 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.70C2^2wrC2 | 448,747 |
C14.71C22≀C2 = (C2×C14)⋊8D8 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | | C14.71C2^2wrC2 | 448,751 |
C14.72C22≀C2 = (C7×D4).31D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | | C14.72C2^2wrC2 | 448,752 |
C14.73C22≀C2 = C24.20D14 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.73C2^2wrC2 | 448,756 |
C14.74C22≀C2 = (C7×Q8)⋊13D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.74C2^2wrC2 | 448,761 |
C14.75C22≀C2 = (C2×C14)⋊8Q16 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.75C2^2wrC2 | 448,762 |
C14.76C22≀C2 = C14.C22≀C2 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 448 | | C14.76C2^2wrC2 | 448,763 |
C14.77C22≀C2 = (C22×Q8)⋊D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.77C2^2wrC2 | 448,765 |
C14.78C22≀C2 = (C7×D4)⋊14D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.78C2^2wrC2 | 448,772 |
C14.79C22≀C2 = (C7×D4).32D4 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 224 | | C14.79C2^2wrC2 | 448,773 |
C14.80C22≀C2 = 2+ 1+4⋊D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 56 | 8+ | C14.80C2^2wrC2 | 448,775 |
C14.81C22≀C2 = 2+ 1+4.D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | 8- | C14.81C2^2wrC2 | 448,776 |
C14.82C22≀C2 = 2+ 1+4.2D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | 8- | C14.82C2^2wrC2 | 448,777 |
C14.83C22≀C2 = 2+ 1+4⋊2D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 56 | 8+ | C14.83C2^2wrC2 | 448,778 |
C14.84C22≀C2 = 2- 1+4⋊D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | 8+ | C14.84C2^2wrC2 | 448,779 |
C14.85C22≀C2 = 2- 1+4.D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | 8- | C14.85C2^2wrC2 | 448,780 |
C14.86C22≀C2 = C25.D7 | φ: C22≀C2/C24 → C2 ⊆ Aut C14 | 112 | | C14.86C2^2wrC2 | 448,781 |
C14.87C22≀C2 = C7×C24⋊3C4 | central extension (φ=1) | 112 | | C14.87C2^2wrC2 | 448,787 |
C14.88C22≀C2 = C7×C23.8Q8 | central extension (φ=1) | 224 | | C14.88C2^2wrC2 | 448,793 |
C14.89C22≀C2 = C7×C23.23D4 | central extension (φ=1) | 224 | | C14.89C2^2wrC2 | 448,794 |
C14.90C22≀C2 = C7×C23⋊2D4 | central extension (φ=1) | 224 | | C14.90C2^2wrC2 | 448,800 |
C14.91C22≀C2 = C7×C23⋊Q8 | central extension (φ=1) | 224 | | C14.91C2^2wrC2 | 448,801 |
C14.92C22≀C2 = C7×C23.10D4 | central extension (φ=1) | 224 | | C14.92C2^2wrC2 | 448,802 |
C14.93C22≀C2 = C7×C23.78C23 | central extension (φ=1) | 448 | | C14.93C2^2wrC2 | 448,803 |
C14.94C22≀C2 = C7×C22⋊D8 | central extension (φ=1) | 112 | | C14.94C2^2wrC2 | 448,855 |
C14.95C22≀C2 = C7×Q8⋊D4 | central extension (φ=1) | 224 | | C14.95C2^2wrC2 | 448,856 |
C14.96C22≀C2 = C7×D4⋊D4 | central extension (φ=1) | 224 | | C14.96C2^2wrC2 | 448,857 |
C14.97C22≀C2 = C7×C22⋊SD16 | central extension (φ=1) | 112 | | C14.97C2^2wrC2 | 448,858 |
C14.98C22≀C2 = C7×C22⋊Q16 | central extension (φ=1) | 224 | | C14.98C2^2wrC2 | 448,859 |
C14.99C22≀C2 = C7×D4.7D4 | central extension (φ=1) | 224 | | C14.99C2^2wrC2 | 448,860 |
C14.100C22≀C2 = C7×D4⋊4D4 | central extension (φ=1) | 56 | 4 | C14.100C2^2wrC2 | 448,861 |
C14.101C22≀C2 = C7×D4.8D4 | central extension (φ=1) | 112 | 4 | C14.101C2^2wrC2 | 448,862 |
C14.102C22≀C2 = C7×D4.9D4 | central extension (φ=1) | 112 | 4 | C14.102C2^2wrC2 | 448,863 |
C14.103C22≀C2 = C7×D4.10D4 | central extension (φ=1) | 112 | 4 | C14.103C2^2wrC2 | 448,864 |
C14.104C22≀C2 = C7×C2≀C22 | central extension (φ=1) | 56 | 4 | C14.104C2^2wrC2 | 448,865 |
C14.105C22≀C2 = C7×C23.7D4 | central extension (φ=1) | 112 | 4 | C14.105C2^2wrC2 | 448,866 |